
UNIT 3

What is a semaphore? Explain how semaphores can be used to deal with

n-process critical section.

Ans: semaphore is a hardware-based solution to the critical section problem.

A Semaphore S is a integer variable that, apart from initialization is accessed only

through two standard atomic operations: wait() and signal().

 The wait () operation is termed as P and signal () was termed as V

Definition of wait () is

 Wait (S) {

 While S <= 0

 ; S--;

 }

Definition of signal () is

 Signal (S) {

 S++;

 }

All modifications to the integer value of the semaphore in the wait () and signal()

operations must be executed indivisibly, that is when one process modifies the

semaphore value, no other process can simultaneously modify that same semaphore

value.

Usage:

Operating systems often distinguish between counting and binary semaphores. The

value of counting semaphore can range over an unrestricted domain and the binary

semaphore also known as mutex locks which provide mutual exclusion can range only

between 0 and 1. Binary semaphores are used to deal with critical-section problem for

multiple processes as n processes share a semaphore mutex initialized to 1.

 do {

 Wait (mutex) ;

 // critical section

 Signal (mutex);

 // remainder section

 } while (TRUE);

Counting semaphores can be used to control access to a given resource consisting of a

finite number of instances. Each process that wishes to use a resource performs a wait

() operation on the semaphore. When the count for the semaphore goes to 0, all

resources are being used. And the process that wish to use a resource will block until

the count becomes greater than 0.

Implementation:

The main disadvantage of the semaphore is that it requires busy waiting. Busy waiting

wastes CPU cycles that some other process might be able to use productively. This

type of semaphore is also called a spinlock because the process spins while waiting for

the lock. To overcome the need for busy waiting, we can modify the definition of wait

() and Signal () semaphore operations.

 When the process executes the wait () operation and finds that the semaphore

value is not positive it must wait. Rather that engaging in busy waiting the process can

block itself. The block operation places a process into a waiting queue associated with

the semaphore and the state of the process is switched to the waiting state.

 The process that is blocked waiting on a semaphore S should be restarted when

some other process executes a signal () operation, the process is restarted by a wakeup

() operation.

Definition of semaphore as a C struct

 typedef struct {

 int value;

 struct process *list;

 } semaphore;

Each semaphore has an integer value and a list of processes list. When a process

must wait on a semaphore, it is added to the list of processes. A signal() operation

remove one process from the list of waiting processes and awakens that process.

 Wait () operation can be defined as

 Wait (semaphore *s) {

 S->value--;

 If (s->value <0) {

 Add this process to S->list;

 block (); } }

 Signal operation can be defined as

 Signal (semaphore *S) {

 S->value++;

 If (S-> value <=0) {

 Remove a process P from S-> list;

 Wakeup (P); } }

The block () operation suspends the process that invokes it. The wakeup () operation

resumes the execution of a blocked process P.

 This is a critical section problem and in a single processor environment we can solve

it by simply inhibiting interrupts during the time the wait () and signal () operations

are executing and this works in single processor. Where as in multi processor

environment interrupts must be disabled on every processor.

Deadlock and Starvation:

The implementation of semaphore with a waiting queue may result in a satiation

where two more processes are waiting indefinitely for an event that can be caused

only by one of the waiting processes. When such a state is reached that process are

said to be deadlocked.

 P0 p1

 Wait(S); wait(Q);

 Wait(Q); Wait(S);

 . .

 . .

 . .

 Signal(S); Signal (Q);

 Signal (Q); Signal (S);

P0 executes wait (S) and then P1 executes wait (Q). When p0 executes wait (Q), it

must wait until p1 executes Signal (Q) in the same way P1 must wait until P0

executes signal (S). So p0 and p1 are deadlocked.

The other problem related to deadlocks is indefinite blocking or starvation, a situation

where processes wait indefinitely within the semaphore.

Priority inversion:

Scheduling challenges arises when a higher priority process needs to read or modify

kernel data that are currently used by lower priority process. This problem is known as

priority inversion and it occurs in systems with more than two priorities and this can

be solved by implementing priority- inheritance protocol. According to this, all

processes that are accessing resources needed by a higher priority process inherit the

higher priority until they are finished with the resources.

1. What is deadlock? What are the necessary conditions of deadlock?

Ans: A process requests resources, if the resources are not available at that time; the

process enters a waiting state. Sometimes a waiting process is never again able to

change state, because the resources it has requested are held by other waiting

processes. This situation is called a deadlock.

Necessary conditions of deadlock or deadlock characterization:

A deadlock situation can rise if the following four conditions hold simultaneously in a

system:

1. Mutual exclusion: At least one resource must be held in a non-sharable mode, that

is, only one processes at a time can use the resource. If another process requests

that resource, the requesting process must be delayed until the resources have been

released.

2. Hold and wait: A process must be holding at least one resource and waiting to

acquire additional resources that are currently being held by other processes.

3. No pre-emption: Resources cannot be pre-empted; that is, resources can be

released only voluntarily by the process holding it, after that process has completed

its task.

4. Circular wait: A set {p0,p1,p2....} of waiting processes must exist such that p0 is

waiting for a resource held by p1, p1 is waiting for a resource held by p2,....pn-1 is

waiting for a resource held by pn, and pn is waiting for a resource held by p0.

2. Explain a deadlock situation with resource allocation graph?

Ans: deadlocks can be described in terms of a directed graph called a system

resources-allocation graph. This graph consists of A set of vertices V and a set of

edges E.

V is partitioned into two types of nodes:

 ● P = {P1, P2, …, Pn}, the set consisting of all the processes in the system.

● R = {R1, R2, …, Rm}, the set consisting of all resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi->Rj is called as

requesting edge and it signifies that process Pi has requested an instance type Rj and

is currently waiting for that resource.

A directed edge Pi -> Rj is called a assignment edge, it signifies that resource type

Rj has been allocated to process Pi

Process Pi is represented as Circle

And each resource type Rj is represented as a rectangle

And since each resource type Rj can have more than one instance represented each

such instance as a dot with in the rectangle

Example of a Resource Allocation Graph

.

 R1 R3

R2 R4

 Process P1 is holding an instance of resource type R2 and is waiting for an

instance of resource type R1

 Process p2 is holding an instance of R1 and an instance of R2 and is waiting

for an instance of R3

 Process P3 is holding an instance of R3

If the graph contains no cycles then no process in the system is deadlocked. If the

graph contains a cycle then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a deadlock

had occurred. If each resource type has several instances, then a cycle does not

necessarily imply that a deadlock has occurred.

 R1 R3

R2

 R4

In the above example the process P3 requests an instance of resource type R2, and

no resource instance is available, a request edge P3->R2 is added to the graph. At

this point two minimal cycles exist in the system

 P1->R1->P2->R3->P3->R2->P1

 P2->R3->P3->R2->P2

 .

.

.

.

.

.

 .

P1 P2 P3

.

.

.

.

.

P1 P2 P3

. .

Processes P1, P2 and P3 are deadlocked R1

 R2

In the above example there is a cycle but no deadlock.

P1->R1->P3->R2->P1

Process P4 may release its instance of resource type R2 and that resource can

be allocated to P3 breaking the cycle.

3. What are the methods to handle and prevent deadlock?

Ans:

 Ensure that the system will never enter a deadlock state

 Allow the system to enter a deadlock state and then recover

 Ignore the problem and pretend that deadlocks never occur in the system

 used by most operating systems, including UNIX and Windows

 For a deadlock to occur each of the four necessary conditions must hold. By

ensuring that at least one of these conditions cannot hold, we can prevent the

occurrence of deadlock.

 Mutual Exclusion – not required for sharable resources and read only files are a

good example of sharable resources but must hold for non-sharable resources.

Hold and Wait – must guarantee that whenever a process requests a resource, it

does not hold any other resources

1. Require process to request and be allocated all its resources before it begins

execution, or

2. Allow process to request resources only when the process has none – it must

release its current resources before requesting them back again

P1

P4

P3

P2
.

.

.

.

 Disadvantages: –

Resource utilization may be low since resources may be allocated but unused for

long period

Starvation is possible. A process that needs several popular resources may have to

wait indefinitely, because at least one of the resources that it needs is always

allocated to some other process.

No Preemption –

 If a process, that is holding some resources, does request another resource

that cannot be immediately allocated to it, then all its resources currently

being held are released

 Preempted resources are added to the list of resources for which the process

is waiting

 Process will be restarted only when it can regain its old resources, as well

as the new ones that it is requesting

This process is often applied to resources whose state can be easily saved and

restored later such as CPU registers and memory space.

Circular Wait – impose a total ordering of all resource types

 require that each process requests resources in an increasing order of

enumeration, or release resources of higher or equal order

 Several instances of one resource type must be requested in a single

request

 a witness may detect a wrong order and emit a warning

 Lock ordering does not guarantee deadlock prevention if locks can be

acquired dynamically.

4. Deadlock Avoidance

Ans: Avoiding deadlocks requires additional information about how resources

are to be requested. The most simple and useful model requires that each process

declare maximum number of resources of each type that it may need. With this

prior information it is possible to construct an algorithm that ensures the system

will never enter into deadlock state.

 Deadlock- avoidance algorithm dynamically examines the

resource allocation state o ensure that a circular wait condition can never exist

and resource allocation state is defined by the number of available and allocated

resources and the maximum demands of the process.

Safe state:

A state is safe if the system can allocate resources to each process in some order

and still avoid a deadlock. A system is in a safe state if there exists a safe

sequence.

When a process requests an available resource, system must decide if immediate

allocation leaves the system in a safe state.

Sequence is safe if for each Pi, the resources that Pi can still request, can be

satisfied by currently available resources + resources held by all the Pj, with j < i

Formally, there is a safe sequence such that for all i = 1, 2, ..., n,

 Available + Σ1≤ k ≤ i (Allocatedk) ≥ MaxNeedi

1. If Pi resource needs are not immediately available, then P can wait until all

 P (j < i) have finished.

2. When Pj (j < i) is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate.

3. When Pi terminates, Pi+1 can obtain its needed resources, and so on.

A safe state is not a deadlocked state. A deadlocked state is an unsafe state and not

all unsafe states are deadlocks. As long as the state is safe, the operating system acn

avoid unsafe states.

 Unsafe

 Safe

deadlock

Resource- Allocation- Graph Algorithm

If we have a resource-allocation system with only one instance of each

resource, we use a variant of the resource- allocation graph for deadlock

avoidance called claim edge

 Claim edge Pi → Rj indicated that process Pj may request resource Rj;

represented by a dashed line.

 Request edge Pi Rj when a process requests a resource.

 When a resource is released by a process, assignment edge Rj → Pi

reconverts to a claim edge Pi → Rj.

Resources must be claimed a priori in the system. Grant a request only if no

cycle created. R1

 Request edge

 Assignement edge

 R2

 ------- ---------- ------

 Claim edge

 Resource- allocation graph for deadlock avoidance

The requesting edge can be granted only if converting the request edge Pi->Rj

to an assignment edge Rj->Pi does not result in the formation of a cycle in the

resource allocation graph. Cycle – detection algorithm is used to check the

safety. To detect a cycle in this graph requires an order of n2 operations where

n is the number of processes in the system.

If no cycle exists, then the allocation of the resource will leave the system in a

safe state. If a cycle is found then the allocation will put the system in unsafe

state. R1

Unsafe state in a resource- allocation graph

 R2

 ------- R2

P2 P1

P2

P1

Bankers Algorithm

 Bankers Algorithm is applicable to systems having multiple instances

but it is less efficient than the resource allocation graph.

 When a new process enters the system, it must declare the maximum

number of instances of each resource type that it may need.

 This number must not exceed the total number of resources available in

the system

 Allocation of resources is done to a requesting process until the process

leaves system is in safe state.

Several data structures must be maintained to implement the banker’s

algorithm.

 Let n = number of processes, and m = number of resources types.

 Available: Vector of length m. If available [j] = k, there are k instances

of resource type Rj available.

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most

k instances of resource type R request at most k instances of resource

type Rj .

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently

allocated k instances of Rj.

 Need: n x m matrix. If Need [i,j] = k, then Pi may need k more instances

of Rj to complete its task.

Need[i, j] = Max[i, j]- Allocation [i, j]

Safety Algorithm

 This algorithm is used to find out whether or not a system is in a safe state.

Let Work and Finish be vectors of length m and n, respectively.

 Initialize: Work = Available Finish [i] = false for i = 0, 1, …, n-1. 2.

 Find an i such that both:

(a) Finish [i] = false

(b) Needi ≤ Work

 If no such i exists, go to step 4.

 3. Work = Work + Allocation

Finish [i] = true

 go to step 2.

4. If Finish [i] == true for all i, then the system is in a safe state.

This algorithm requires an order of m x n2 operations to determine whether a state is

safe.

Resource Resource-Request Algorithm

 Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k

instances of resource type Rj.

1. If Requesti ≤ Needi go to step 2. Otherwise, raise error condition, since process

has exceeded its maximum claim.

2. 2. If Requesti ≤ Available, go to step 3. Otherwise Pi must wait, since resources

are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available - Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

 If safe ⇒ the resources are allocated to Pi. If unsafe ⇒ Pi must wait, and the old

resource-allocation state is restored

5. Deadlock Detection

 An algorithm that examines the state of the system to determine whether

a deadlock has occurred

 An algorithm to recover from the deadlock.

Single Instance of Each Resource Type: If all resources have only a

single instance, then we define a deadlock detection algorithm that use a

variant of the resource- allocation graph called a wait- for graph.

 An edge from Pi to Pj in wait- for graph implies that process Pi is

waiting for process Pj to release a resource that Pi needs.

 An edge Pi Pj exists in a wait- for graph if and only if the

corresponding resource- allocation graph contains two edges Pi Rq

and Rq Pj for some resource Rq.

Diagram in page no 302 from text book

Deadlock exists in the system if and only if the wait- for graph

contains a cycle

To detect a cycle in a graph requires an order of n2 operations, where

n is the number of vertices in the graph.

Several Instances of a Resource Type:

 Available: A vector of length m indicates the number of available

resources of each type.

 Allocation: An n x m matrix defines the number of resources of each type

currently allocated to each process.

 Request: An n x m matrix indicates the current request of each process. If

Request [i j] = k, then process Pi is requesting k more instances of

resource type Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize: (a)

Work = Available (b)For i = 1,2, …, n, if Allocationi ≠ 0, then Finish[i] =

false; otherwise, Finish[i] = true.

2. Find an index i such that both:

(a)Finish [i] == false

 (b)Request i ≤ Work If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish [i] = true

 go to step 2.

4. If Finish [i] == false, for some i, 0 ≤ i ≤ n, then the system is in deadlock

state. Moreover, if Finish [i] == false, then P is deadlocked.

This algorithm requires an order of m x n2 operations to detect whether the

system is in deadlocked state.

6. Recovery from Deadlock

Ans: There are two options for breaking a deadlock.

 One is simply to abort one or more processes to break the circular wait.

 Second one is to pre-empt some resources from one or more of the

deadlocked processes.

To eliminate deadlocks by aborting a process, we use one of the two methods.

Process Termination

 Abort all deadlocked processes. This method clearly break the deadlock

cycle, but at great expense

 Abort one process at a time until the deadlock cycle is eliminated: since

after each process is aborted, a deadlock- detection algorithm must be

invoked to determine whether any processes are still deadlocked

 In which order should we choose to abort?

1. Priority of the process.

2. How long process has computed, and how much longer to

completion.

3. Resources the process has used.

4. Resources process needs to complete.

5. How many processes will need to be terminated?

6. Is process interactive or batch?

Resource Preemption

Successively pre-empt some resources and give them to other processes until

the deadlock cycle is broken.

If pre-emption is required to deal with deadlocks, then three issues need to be

addressed.

 selecting a victim: which resources and which processes are to be pre-

empted

1. How to minimize the cost?

2. what types and how many resources are held

3. how much time has run

4. how much time to end

 Rollback: if we pre-empt a resource from a process, what should be

done with that process

1. rollback a process to a safe state, and restart it (some resources are

released)

2. Two implementations –

3. totally rollback: simple but expensive as far as necessary – (OS should

maintain “checkpoints ”)

4. checkpoint: a recording of the state of a process to allow rollback.

 Starvation

Not always select the same process for pre-emption

8. What is address binding. Explain Logical versus and physical address

space?

Ans: After the instruction has been executed on the operands, results may be

stored back into the memory. The memory unit sees only the stream of memory

addresses; it does not known how they are generated and what they are for.

Main memory and the registers built into the processor itself are the only

storage that the CPU can access directly.

Registers that are built into the CPU are generally accessible within one cycle of

the CPU block.

Each process has a separate memory space and range of legal addresses that the

process may access and to ensure that the process can access only these legal

addresses. To ensure this, protection is provided by using two registers called

base and limit register.

The base register holds the smallest legal physical memory address and limit

register specifies the size of the range. The base and limit registers can be

loaded only by the operating system.

Address Binding

Program resides on a memory as an executable file, and that program must be

brought into memory and placed within a process. The processes on the disk

that are waiting to be brought into memory for execution from the input queue.

After the successful execution of process, it terminates and its memory space is

declared available.

 Binding of instructions and data to memory addresses can be done at any step:

 Compile Time: If memory location known a priori, absolute code can be

generated; must recompile code if starting location changes.

 Load Time: Must generate relocatable code if memory location is not

known at compile time

 Execution time: Binding delayed until run time if the process can be

moved during its execution from one memory segment to another. Need

hardware support for address maps (e.g., base and limit registers).

Logical Versus Physical Address Space

 Logical address – generated by the CPU; also referred to as virtual

address

 Physical address – address seen by the memory unit, the one loaded into

the memory address register of the memory

 Logical and physical addresses are the same in compile-time and load-

time address-binding schemes; logical (virtual) and physical addresses

differ in execution-time address-binding scheme

 The set of all logical addresses generated by a program is a logical

address space and the set of all physical addresses corresponding to these

physical addresses is a physical address space

 The run- time mapping from virtual to physical addresses is done by a

hardware device called memory- management unit(MMU).

9. What is swapping? Explain in detail.

Ans: A process must be in memory to be executed and can be swapped

temporarily out of memory to a backing store and then brought back into

memory for continued execution

Backing store – fast disk large enough to accommodate copies of all memory

images for all users; must provide direct access to these memory images.

A variant of this swapping policy is used for priority based scheduling

algorithms. If a higher priority process arrives and wants service the memory

manager can swap out the lower priority process and then load and execute the

higher- priority process. This type of swapping called Roll out and Roll in

Roll out, roll in – swapping variant used for priority-based scheduling

algorithms; lower-priority process is swapped out so higher-priority process can

be loaded and executed

Main

memory

 Swap out

 Backing

Store

Operating

system

user

space

Proces

s p1

Proces

s p2

Sswap out

 The process that is swapped out will be swapped in to the same

memory by the method of address binding

 If binding is done at assembly or load time, then the process

cannot be easily moved to a different location

 In execution time swapped process can be moved into different

memory space.

 The backing store accommodate copies of all memory images

for all users and provides direct access to these memory images

 The system maintains a ready queue consisting of all

processes whose memory images on the backing store or in

memory and are ready to run.

 The dispatcher checks to see whether the next process in the

queue is in memory, if it is not the dispatcher swaps out a

process currently in memory and swaps in the desired process.

 The context- switch time is high

 The total transfer time is directly proportional to the amount of

memory swapped.

 There are other constraints for swapping a process.

 To swap a process it should be completely idle.

The two main solutions for this problem is never swap a process with

Pending I/O , or execute I/O operations only into operating system

buffers.

